

Atrial remodeling and atrial fibrillation in patients with obstructive sleep apnea

Yung-Lung Chen (陳永隆), M.D.

Kaohsiung Chang Gung Memorial Hospital, Taiwan

Korean Heart Rhythm Society COI Disclosure

Name of First Author: Yung-Lung Chen

The authors have no financial conflicts of interest to disclose concerning the presentation

Outline

Clinical relationship between OSA and AF

OSA: obstructive sleep apnea

AF: atrial fibrillation

Sleep-disordered breathing: a risk of AF

Association of Nocturnal Arrhythmias with Sleep-disordered Breathing

The Sleep Heart Health Study

Reena Mehra, Emelia J. Benjamin, Eyal Shahar, Daniel J. Gottlieb, Rawan Nawabit, H. Lester Kirchner, Jayakumar Sahadevan, and Susan Redline

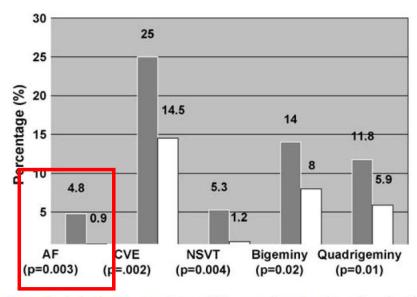


Figure 1. Arrhythmia prevalence (%) according to sleep-disordered breathing (SDB) status. Shaded bars, SDB; open bars, non-SDB. AF, atrial fibrillation; CVE, complex ventricular ectopy; NSVT, nonsustained ventricular tachycardia. n=228 with SDB and n=338 without SDB.

TABLE 3. ADJUSTED AND UNADJUSTED ODDS RATIOS RELATING ARRHYTHMIA OCCURRENCE AND SLEEP-DISORDERED BREATHING

Arrhythmia Type	Unadjusted Odds Ratio	Odds Ratio* (95% CI) Adjusted for Age, Sex, BMI	Odds Ratio* (95% CI) Adjusted for Age, Sex, BMI, CHD
Nonsustained ventricular tachycardia	4.64 (1.48–14.57)	3.72 (1.13–12.2)	3.40 (1.03–11.2)
Complex ventricular ectopy	1.96 (1.28-3.00)	1.81 (1.16-2.84)	1.74 (1.11-2.74)
Atrial fibrillation	5.66 (1.56–20.52)	3.85 (1.00–14.93)	4.02 (1.03–15.74)

Definition of abbreviations: BMI = body mass index; CHD = coronary heart disease; CI = confidence interval.

^{*} Results of logistic regression analysis with SDB as the exposure, n = 228 with SDB and n = 338 without SDB.

Risk of AF in OSA: Meta-analysis data

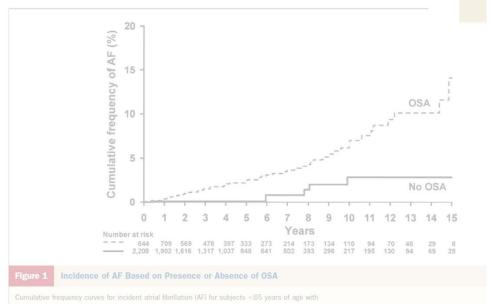
Incidence of AF is 88% higher in patients with OSA (54,271pts in 20 studies)

AF and OSA

Author(s) and Year		AF-/OSA-	AF-/OSA+	AF+/OSA-	AF+/OSA+	Log OR [95% CI]
Adderley et al, 2020		14809	4225	780	339	0.42 [0.29, 0.55]
Cadby et al, 2015	H ≡ H	2408	3978	81	374	1.03 [0.78, 1.27]
Gami et al, 2007	⊢	897	2512	19	114	0.76 [0.27, 1.25]
Ganga et al, 2013	⊢	2626	78	159	10	0.75 [0.07, 1.43]
Korostovtseva et al, 2017	⊢	72	192	3	12	0.41 [-0.89, 1.70]
Kwon et al, 2018	⊢ ■	29	37	58	81	0.09 [-0.50, 0.68]
May et al, 2016	⊢ ■÷₁	442	302	49	50	0.40 [-0.02, 0.82]
Mehra et al, 2006		335	217	3	11	1.73 [0.45, 3.02]
Mehra et al, 2009	⊢ ■	704	2069	23	115	0.53 [0.08, 0.99]
Porthan et al, 2004	⊢ ■	40	16	40	19	0.17 [-0.62, 0.97]
Selim et al, 2016	⊢	156	503	4	34	0.97 [-0.08, 2.02]
Tanigawa et al, 2006		968	146	7	8	2.03 [1.00, 3.05]
Tung et al, 2017	⊢⊞	1330	1244	142	196	0.39 [0.16, 0.62]
Wang et al, 2019	-	⊣ 35	39	1	10	2.19 [0.09, 4.30]
Wong et al, 2015	┊ —■──	295	24	178	48	1.20 [0.67, 1.72]
Xu et al, 2020	⊢	197	249	31	78	0.69 [0.23, 1.14]
RE Model	*					0.68 [0.48, 0.89]
	-1 0 1 2 3 4	5				
В	Log Odds Ratio				J. Clin. N	Med. 2022 , 11, 1242.

KHRS 2023

AHI and nocturnal oxygen desaturation predict AF — a retrospective cohort study


A

L

Table 3

Obstructive Sleep Apnea, Obesity, and the Risk of Incident Atrial Fibrillation

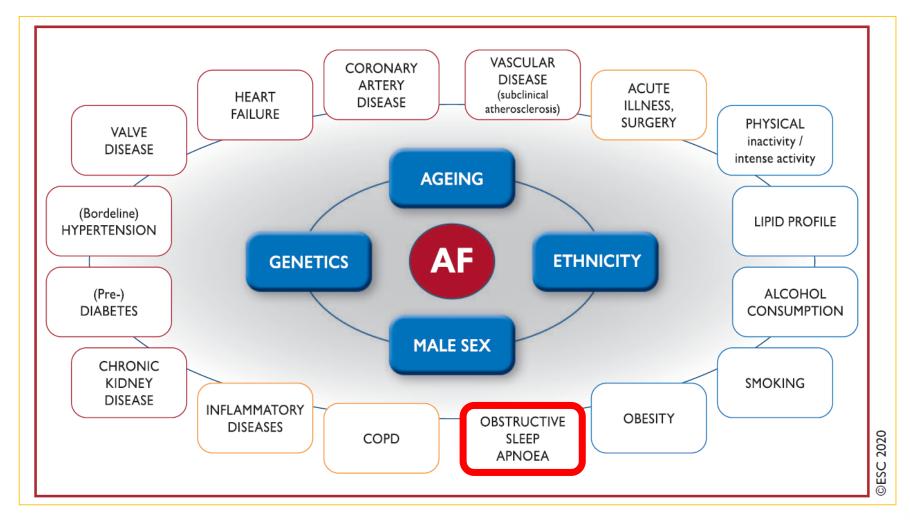
Apoor S. Gami, MD,*† Dave O. Hodge, MS,‡ Regina M. Herges, BS,‡ Jiri Nykodym, BS,*† Tomas Kara, MD,*† Virend K. Somers, MD, PhD, Rochester, Minnesota

Obstructive sleep apnea (apnea-hypopnea index ≥5)	2.18	1.34-3.54	0.002
Apnea-hypopnea index (per 1 event/h)*	1.31	1.14-1.50	0.0001
Tertiles of apnea-hypopnea index distribution	1.36	1.13-1.64	0.001

Risk of Incident Atrial

Fibrillation, Multivariate Models

	HR	95% CI	p Value
<65 yrs old			
Age (per 10 yrs)	2.04	1.48-2.80	< 0.001
Male gender	2.66	1.33-5.30	0.006
Coronary artery disease	2.66	1.46-4.83	0.001
Body mass index (per 1 kg/m²)	1.07	1.05-1.10	< 0.001
Decrease in nocturnal oxygen saturation (per -1%)*	3.29	1.35-8.04	0.009
≥65 yrs old			
Heart failure	7.68	4.32-13.66	< 0.001


^{*}For a 0.5-U change in the logarithm of the difference between awake oxygen saturation and mean nocturnal oxygen saturation.

CI = confidence interval; HR = hazard ratio.

01

01

OSA: a significant risk factor of AF

Relation of the Severity of OSA in Response to AADs in AF/AFL

Cohort characteristics and response to antiarrhythmic drug	s stratified by
obstructive sleep apnea status	

Characteristic	Entire Cohort $(n = 61)$	Nonsevere OSA $(n = 38)$	Severe OSA $(n = 23)$
Age (years)	64 ± 9	64 ± 11	65 ± 7
Women*	34%	42%	22%
Caucasian	89%	90%	87%
Body mass index (kg/m ²)	34 ± 7	33 ± 8	36 ± 6
Hypertension*	66%	58%	78%
Coronary artery disease [†]	31%	18%	52%
Heart failure	20%	15%	26%
AF			
Paroxysmal	61%	63%	57%
Persistent	25%	21%	30%
Dormanent	15%	16%	13%

Response to AADs [‡] 49% 61% 30%

p<0.05

response to AADs.	4770	0170	3070	
Echocardiographic				
parameters				
Left atrial dimension	46 ± 8	46 ± 8	47 ± 8	
(mm)		0	0	
, ,	50 ± 11	50 ± 10	47 + 14	
Left ventricular ejection	50 ± 11	52 ± 10	47 ± 14	
fraction (%)				
Left ventricular	47%	43%	52%	
hypertrophy				
Right ventricular	38 ± 12	38 ± 12	38 ± 12	
systolic pressure				
• 1				
(mm Hg)				
Polysomnographic				
parameters				
AHI (events/hour) [†]	28 ± 22	14 ± 8	51 ± 19	
Minimum oxygen	81 ± 8	84 ± 8	77 ± 6	
saturation (%) [†]	01 = 0	04 = 0	// = 0	
	12 + 9	15 + 0	7 + 5	
Portion of total sleep	13 ± 8	15 ± 8	7 ± 5	
time in rapid eye				An
movement (%) [‡]				

Presence and severity of OSA and remote outcomes of AF ablations — a long-term prospective, cross-sectional cohort study

Parameter; mean \pm SD or n (%)	OSA+ (n=115)	OSA- (n=136)	p value
AHI (per hour)	15.4±12.2	1.9±1.4	-
Lowest SpO ₂ (%)	81.8±6.5	86.5±5.0	< 0.0001
Time in desaturation (min)	26.8±43.1	12.3±36.2	< 0.0001
Percent time in desaturation (%)	5.8 ± 10.0	3.2±9.9	< 0.0001
Oxygen desaturation events (per hour)	15.9±13.0	3.1±3.3	< 0.0001
Snoring percent time	12.4±19.7	10.6 ± 18.6	0.11
AF recurrence	75 (65.2 %)	62 (45.6 %)	0.003
Male sex; n (%)	80 (69.6 %)	83 (61.0 %)	0.20
Age (years)	59.7±7.8	55.7±11.3	0.01
Height (cm)	172.0 ± 9.9	172.0 ± 10.7	0.97
Weight (kg)	91.1±17.0	84.6±15.3	0.002
Body mass index (kg/m ²)	30.8±5.3	28.5±4.1	0.0002
Neck circumference (cm)	41.2±3.8	39.3±3.3	0.0001
Waist circumference (cm)	108.6 ± 12.6	107.6±88.1	< 0.0001
SBP (mm Hg)	132.9 ± 16.7	130.3±16.3	0.23
DBP (mm Hg)	82.0±11.5	79.4±10.7	0.06
HR (beats per min)	76.5±17.4	73.3 ± 13.6	0.13
Prior MI	9 (7.8 %)	11 (8.1 %)	0.87
Diabetes mellitus	12 (10.4 %)	9 (6.6 %)	0.39
Hypertension	91 (79.1 %)	92 (67.6 %)	0.06
Gout	11 (9.6 %)	6 (4.4 %)	0.17
Smoking	10 (8.7 %)	18 (13.2 %)	0.35
Alcohol consumption	13 (11.2 %)	10 (7.4 %)	0.39
Prior stroke	13 (11.3 %)	8 (5.9 %)	0.19
Dyslipidemia	74 (64.3 %)	84 (61.8 %)	0.77
Family history of CVD	41 (35.7 %)	59 (43.4 %)	0.39
Paroxysmal AF	73 (63.5 %)	103 (75.7 %)	0.05

200 RFA/year 70% PAF PVI +/- cardioversion

 Table 5
 Independent risk factor for AF recurrence

	Odds ratio	95 % CI	p value
Obstructive sleep apnea	2.58	1.52-4.38	< 0.0001
History of hyperthyroidism	2.21	1.91-4.10	0.012

CI confidence interval

Body Mass Index, Obstructive Sleep Apnea, and Outcomes of Catheter Ablation of Atrial Fibrillation

KRIT JONGNARANGSIN, M.D., AMAN CHUGH, M.D., ERIC GOOD, D.O., SIDDHARTH MUKERJI, M.D., SUJOYA DEY, M.D., THOMAS CRAWFORD, M.D., JEAN F. SARRAZIN, M.D., MICHAEL KUHNE, M.D., NAGIB CHALFOUN, M.D., DARRYL WELLS, M.D., WARANGKNA BOONYAPISIT, M.D., FRANK PELOSI, JR., M.D., FRANK BOGUN, M.D., FRED MORADY, M.D., and HAKAN ORAL, M.D.

TABLE 1	
Clinical Characteristics of Study Subjec	ts

Number of patients	324
Age (years)	57 ± 11
Gender	
Men	246 (76)
Women	78 (24)
Left atrial size (mm)	44 ± 7
Left ventricular ejection fraction	0.56 ± 0.09
Paroxysmal atrial fibrillation	234 (72)
Chronic atrial fibrillation	90 (28)
Body weight (kg)	95 ± 20
BMI (kg/m^2)	
Normal ($< 25 \text{ kg/m}^2$)	58 (18)
Overweight (≥ 25 and $< 30 \text{ kg/m}^2$)	126 (39)
Obese ($\geq 30 \text{ kg/m}^2$)	140 (43)
Hypertension	150 (46)
Coronary artery disease	34 (11)

Data are shown as mean \pm standard deviation. Percent values are shown in the parentheses.

TABLE 5

Multivariate Analysis of Predictors of Recurrence of AF After Catheter
Ablation

Variables	OR	95% CI	P
Age	1.02	0.99-1.05	0.10
Female	1.23	0.65 - 2.37	0.51
BMI	0.99	0.95 - 1.04	0.73
Chronic atrial fibrillation	1.66	0.93-2.99	0.09
Duration of atrial fibrillation	1.03	0.99 - 1.09	0.20
OSA	3.04	1.11-8.32	0.03
Left atrial size	1.04	1.00-1.09	0.08
Left ventricular ejection fraction	0.97	0.94 - 1.00	0.06
Hypertension	0.89	0.51 - 1.56	0.67

CI = confidence interval; OR = odds ratio.

Heart Rhythm Disorders

Treatment of Obstructive Sleep Apnea Reduces the Risk of Atrial Fibrillation Recurrence After Catheter Ablation

Adam S. Fein, MD, Alexei Shvilkin, MD, PhD, Dhaval Shah, MD, Charles I. Haffajee, MD, Saumya Das, MD, Kapil Kumar, MD, Daniel B. Kramer, MD, Peter J. Zimetbaum, MD, Alfred E. Buxton, MD, Mark E. Josephson, MD, Elad Anter, MD

Boston, Massachusetts

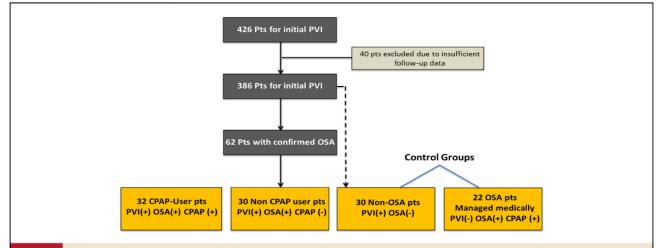
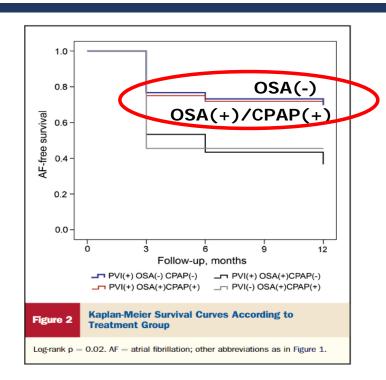



Figure 1 Study Cohort: Flowchart

Flow diagram showing the establishment of the study cohort and division into treatment groups (shown in **dark gray** and control groups in **light gray**). CPAP = continuous positive airway pressure; OSA = obstructive sleep apnea; pts = patients; PVI = pulmonary vein isolation.

Table 2 Multivariate Predictors of AF Recurrence in PVI (+) Patients (Comparison to PVI (+) OSA (-) Group)

Multivariate **Hazard Ratio** 95% Confidence Interval p Value LAD 1.1 per mm 1.04-1.18 0.003 increase PVI (+) OSA (+) 0.7 0.3 - 1.590.39 CPAP (+) PVI (+) OSA (+) 2.15 1.10-5.44 0.02 CPAP (-)

Abbreviations as in Table 1.

J Am Coll Cardiol 2013;62:300-5.

Efficacy of catheter ablation of atrial fibrillation in patients with obstructive sleep apnoea with

and without continuous treatment: a meta-

Li Li^{1*}, Zeng-wu Wang², Jie Li¹,) Chen-xi Jiang³, and Chang-sheng

Table | Study characteristics

Publication year and principal investigator	Study method	AF me
2008 Jongnarangsin et al. ⁸	Retrospective observation	Ab
2010 Patel et <i>al.</i> ⁹	Retrospective evaluation	Ab
2010 Matiello et al. ¹	Retrospective observation	Ab
2013 Fein et al. ¹⁸	Retrospective observation	Ab
2013 Naruse et al. ¹⁶	Prospective case-control	Ab
		57

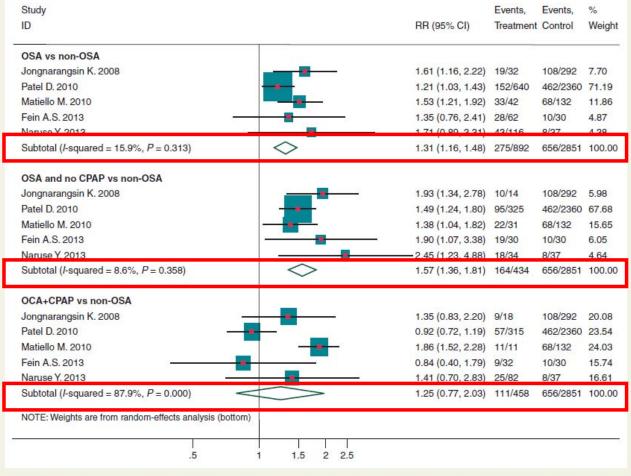
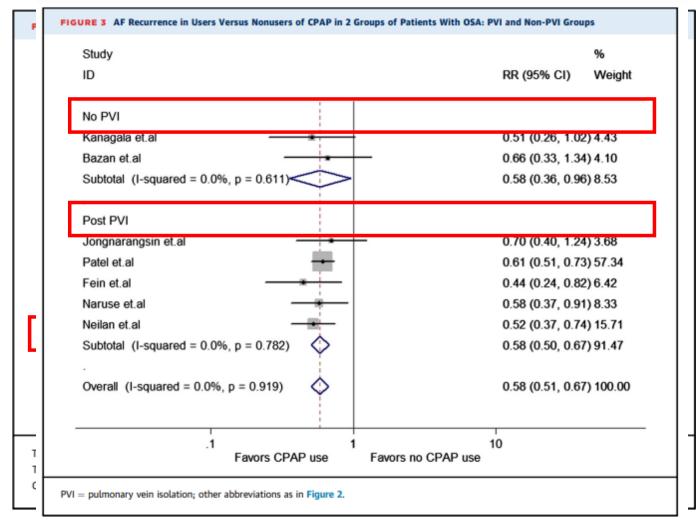


Figure 2 Forest plot in the comparison of AF recurrence after catheter ablation in patients with OSA and non-OSA (top), OSA and no CPAP vs

non-OSA (middle), OSA + CPAP and non-OSA (bottom).

Effect of Obstructive Sleep Apnea


Treatment on A

A Meta-Analysis

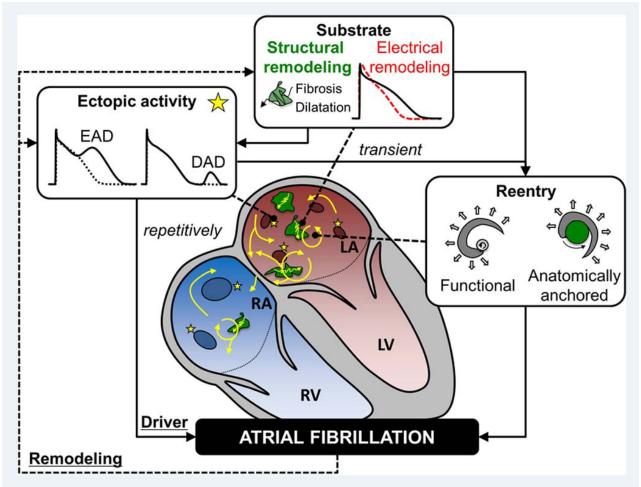
Ashish Shukla, MD, MPH, Anthony Aiz David S. Park, MD, PhD, Scott Bernstei

First Author (Ref. #)	Year Published	Study Design	Geographical Area	En
Kanagala et al. (13)	2003	Prospective cohort study	United States	Patie A n
Jongnarangsin et al. (14)*	2008	Prospective cohort study	United States	OSA id fi c p
Patel et al. (15)	2010	Prospective cohort study	United States	Patie Consider for pu
Bazan et al. (16)	2013	Prospective cohort study	Spain	Patie U S
Fein et al. (17)	2013	Prospective cohort study	United States	Patie C S A
Naruse et al. (18)	2013	Prospective cohort study	Japan	OSA fi c p u
Neilan et al. (19)	2013	Prospective cohort study	United States	OSA ic fr

Values are n (%) or mean ± 5D, unless otherwise indicated. *No clear da

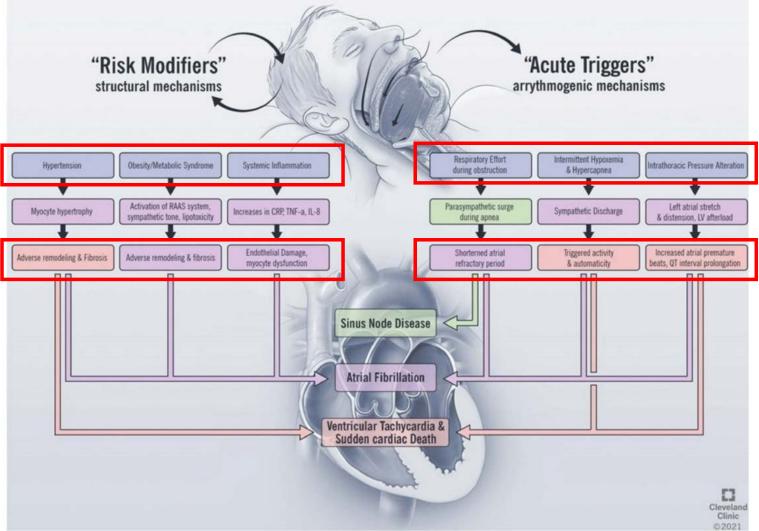
(data on 153 patients also included those who did not have OSA, evalua AF — atrial fibrillation; AFI — atrial flutter; BMI — body mass index; C — chronic; CPAP — continuous positive airway pressure; CTI OSA — obstructive sleep apnea; P — paroxysmal; PAFA — prior atrial fibrillation ablation; Ps — persistent.

Outline


Mechanism of OSA predisposing AF

OSA: obstructive sleep apnea

AF: atrial fibrillation



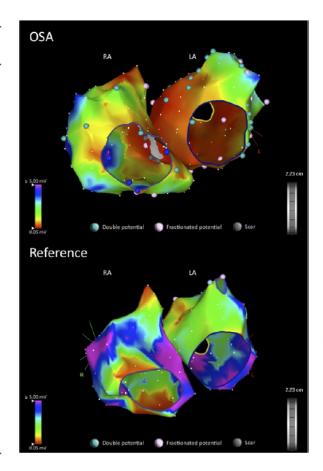
Fundamental mechanisms of AF

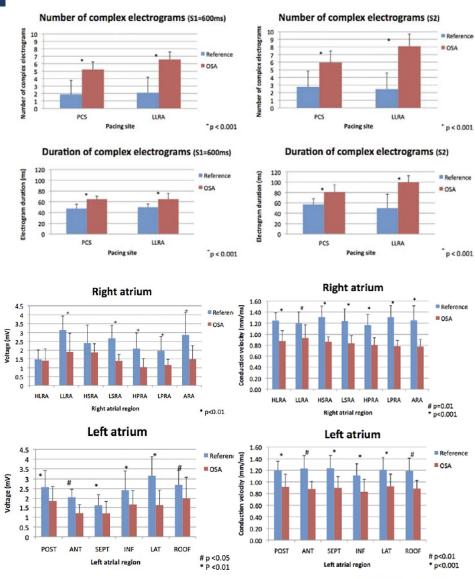
Proposed mechanisms linking OSA and AF

Outline

Atrial remodeling and AF development in OSA

OSA: obstructive sleep apnea


AF: atrial fibrillation

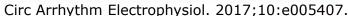

Atrial remodeling in obstructive sleep apnea: Implications for atrial fibrillation

Hany Dimitri, MBBS,* Michelle Ng, BSc,* Anthony G. Brooks, PhD,* Pawel Kuklik, PhD,* Martin K. Stiles, MBChB, PhD,* Dennis H. Lau, MBBS, PhD,* Nicholas Antic, MBBS, PhD,[†] Andrew Thornton, PhD,* David A. Saint, PhD,* Doug McEvoy, MBBS, MD,[†] Ral Antic, MBBS,* Jonathan M. Kalman, MBBS, PhD,[‡] Prashanthan Sanders, MBBS, PhD*

Table 1 Baseline characteristics

	Reference (n = 20)	0SA (n = 20)	Р
Males	16	17	1
Age (y)	51 ± 12	55 ± 12	.5
BMI	29 ± 3.5	32 ± 7.0	.2
Neck circumference	41 ± 4	42 ± 5	.5
Hypertension (treated)	9	11	.7
Structural heart disease	0	0	1
AFSS			.3
Duration	7 (6-9)	8 (7-8)	
Frequency	3 (4-5)	5 (3-7)	.07
Echocardiography data			
LA area indexed BSA (cm²/m²)	9.2 ± 1.3	13 ± 3.8	.009
E/e′ ´	9.2 ± 1.1	9.6 ± 1.1	.8
Estimated RV systolic pressure	17.9 ± 3.4	19.6 ± 4.2	.2
IVSd (cm)	1.09 ± 0.1	1.15 ± 0.1	.3
LVPWd (cm)	1.1 ± 0.07	1.1 ± 0.13	.3
LVEDD (cm)	5.2 ± 0.2	5.3 ± 0.1	.8
LVESD (cm)	3.1 ± 0.4	3.3 ± 0.7	.4
LVEF (%)	62 ± 1	60 ± 1	.7
Polysomnography data			
Sleep efficiency (%)	78 ± 3	80 ± 2	.6
Mean AHI	6 ± 3	38 ± 22	<.0001
Mean CAI	1 ± 1.2	2.6 ± 2.5	.09
Desaturations ≥3%/h (no.)	7 ± 3	25 ± 14	<.0001
Epworth sleepiness scale	7 (4–9)	7 (5–9)	1

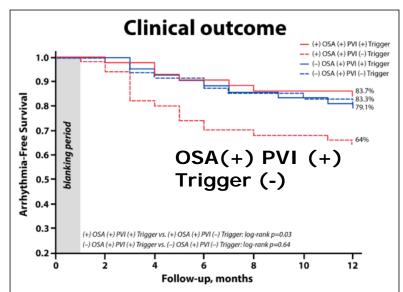


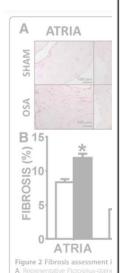

Heart Rhythm 2012;9:32

Atrial Substrate and Triggers of Paroxysmal Atrial Fibrillation in Patients With Obstructive Sleep Apnea

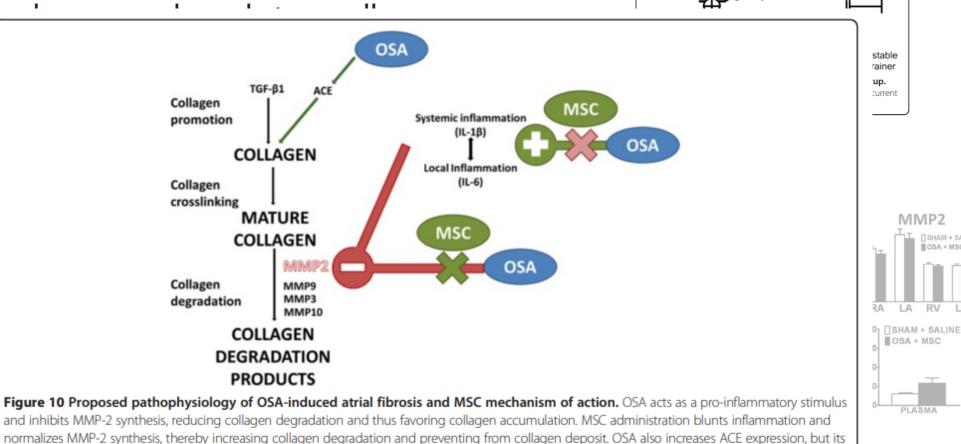
Elad Anter, MD, Luigi Di Biase, MD, PhD, Fernando M. Contreras-Valdes, MD, Carola Gianni, MD, PhD, Sanghamitra Mohanty, MD, Cory M. Tschabrunn, PhD, Juan F. Viles-Gonzalez, MD, Eran Leshem, MD, Alfred E. Buxton, MD, Guy Kulbak, MD, Rim N. Halaby, MD, Peter J. Zimetbaum, MD, Jonathan W. Waks, MD, Robert J. Thomas, MD, MMSc, Andrea Natale, MD, and Mark E. Josephson, MD[†]

Biatrial structural remodeling presenting as patchy areas of low voltage and fractionated electrograms predominantly in the anterior septum




Table 2. Clinical Variables Associated With AF Recurrence

	Univariate		ı	Multivariate		
	Hazard Ratio	95% CI	P Value	Hazard Ratio	95% CI	P Value
Age	1.32	0.8–1.76	0.39			
Sex	0.92	0.6–1.59	0.45			
BMI	1.41	0.9–1.78	0.07			
Hypertension	1.21	0.7-1.62				
Diabetes mellitus	1.4	0.8-1.91	0.10			
LVEF						
LA area indexed BSA	1.56	1.06-1.98	0.002	1.32	1.15-3.70	0.01
ΔE severity index						
Ablation of extra-PV triggers	0.42	0.22-0.78	0.005	0.45	0.21-0.86	0.02


Atrial fibrosis in a chronic murine model of obstructive sleep apnea: mechanisms and

preventi

Pablo Ramos¹, Cira Isaac Almendros^{2†}

sleep apnea.

role in fibrosis promotion is uncertain. Red lines represent inhibition, green lines represent activation. MSC: mesenchymal stem cells. OSA: obstructive

MMP2

OSA + MSC

Bias flow

To pressure and CO₂ tranducers

Head chamber

Influence and Predicting Variables of Obstructive Sleep Apnea on Cardiac Function and Remodeling in Patients without Congestive Heart Failure

Yung-Lung Chen, M.D.¹; Mao-Chang Su, M.D.²; Wen-Hao Liu, M.D.¹; Chin-Chou Wang, M.D.²; Meng-Chih Lin, M.D.²; Mien-Cheng Chen, M.D.¹

OSA cause diastolic dysfunction and LA dilatation

Table 1—Baseline characteristics and laboratory data of all patients with sleep disordered breathing

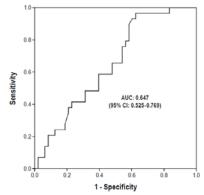

Variables	OSAS group	Control group	p value
Number	65	14	
Age, years	49 ± 10	47 ± 8	0.426
Male gender	83.1% (54)	64.3% (9)	0.113
Hypertension	49.2% (32)	50.0% (7)	0.958
Dyslipidemia	26.2% (17)	28.6% (4)	1.000
Body mass index, kg/m ²	26.9 ± 3.6	24.1 ± 3.4	0.007
Neck circumference, cm	38.4 ± 3.2	36.2 ± 3.7	0.053
Systolic blood pressure, mm Hg	139 ± 16	133 ± 19	0.913
Diastolic blood pressure, mm Hg	79 ± 11	80 ± 13	0.639
hs-CRP, mg/dL	2.40 ± 3.03	1.95 ± 2.02	0.572
NT-proBNP, pg/mL	37.56 ± 30.37	31.18 ± 22.11	0.554
Serum creatinine, mg/dL	0.94 ± 0.20	0.92 ± 0.18	0.792
Serum sodium, mEq/L	141.6 ± 1.7	140.6 ± 2.0	0.077
Heart rate, beats per minute	76 ± 21	70 ± 9	0.176
PR interval, ms	157 ± 28	152 ± 20	0.282
QRS duration, ms	92 ± 15	91 ± 7	0.814
QRS Axis	47 ± 32	42 ± 34	0.521

Table 3—Echocardiographic parameters of all patients with sleep disordered breathing

Variables	OSAS group	Control group	p value
Number	65	14	
2D echocardiography			
Left atrial size, mm	34.7 ± 4.7	31.1 ± 5.3	0.023
Aortic root size, mm	31.6 ± 3.6	29.2 ± 4.0	0.058
Thickness of IVS, mm	11.6 ± 1.8	10.9 ± 1.9	0.265
Thickness of LVPW, mm	9.7 ± 2.0	8.7 ± 2.9	0.207
LVEDD, mm	49.2 ± 4.7	47.6 ± 6.2	0.601
LVESD, mm	30.8 ± 4.4	30.5 ± 4.7	0.794
LVEF, mm	67.1 ± 8.2	64.9 ± 8.8	0.437
SPWMD, mm	1.5 ± 46.5	-10.2 ± 38.4	0.319
MPI	0.323 ± 0.115	0.348 ± 0.087	0.252
TVI at LVOT, cm	22.4 ± 6.2	22.4 ± 4.5	0.704
E-wave velocity, cm/sec	74.3 ± 18.6	74.8 ± 14.5	0.957
A-wave velocity, cm/sec	71.0 ± 16.7	60.2 ± 11.0	0.026
E/A ratio	1.1 ± 0.3	1.3 ± 0.3	0.025
DT, msec	175.5 ± 39.1	169.5 ± 34.5	0.461
TRPG, mm Hg	19.7 ± 6.3	19.4 ± 6.2	0.802
3D echocardiography			
SDI, %	2.02 ± 1.29	2.60 ± 2.14	0.272
LVEDV, mL	96.4 ± 23.6	81.9 ± 15.8	0.041
LVESV, mL	41.5 ± 12.5	35.8 ± 9.3	0.138
LVSV, mL	54.9 ± 13.8	46.1 ± 10.4	0.053
Global LVEF by RT3DE imaging, %	57.2 ± 6.0	56.2 ± 7.5	0.476
Tissue Doppler Echocardiography			
Ts-SD, msec	21.7 ± 15.6	14.4 ± 7.3	0.075
Te-SD, msec	23.1 ± 10.0	25.1 ± 7.3	0.162

Figure 1—Receiver operator characteristic curve for the cutoff value of apnea-hypopnea index (AHI) in predicting E/A ratio ≤ 1 (an index of ventricular diastolic dysfunction)

The area under curve (AUC) for the cutoff value of AHI \geq 32.3/h was 0.647, 95% CI: 0.525, 0.769, p = 0.032.

Table 5—Multivariate logistic regression analysis of predictors for left ventricular diastolic dysfunction

Variable	Odds Ratio	95% CI	p value
AHI in REM ≥ 32.3/h	4.422	1.334-14.666	0.015
CL confidence interval			

J Clin Sleep Med 2014;10(1):57-64.

GJA1 Expression and Left Atrial Remodeling in the Incidence of Atrial Fibrillation in Patients with Obstructive Sleep Apnea Syndrome

Yung-Lung Chen 1,2,3,*, Yung-Che Chen 3,4, Ya-Ting Chang 5, Hui-Ting Wang 6, Wen-Hao Liu 1,3, Shaur-Zheng Chong 1,3, Pei-Ting Lin 1,3, Po-Yuan Hsu 3,4, Mao-Chang Su 3,4 and Meng-Chih Lin 3,4,*

Table 1. Baseline characteristics of obstructive sleep apnea syndrome patients with and without atrial fibrillation

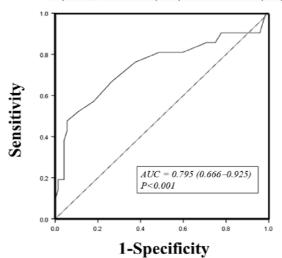
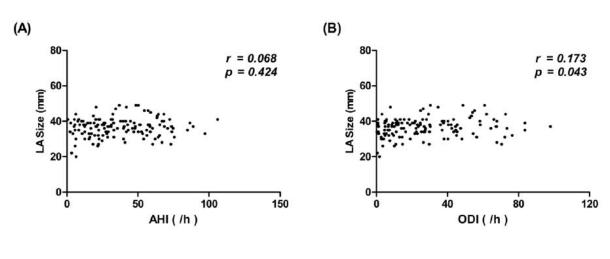

Variables	No AF (N = 82)	AF (N = 21)	p-Value
Age	56.5 (46-64)	68.6 (53–70)	0.016
Sex (male)	21 (25.6%)	4 (19%)	0.776
Smoking	15 (18.3%)	18 (14.3%)	0.,,0
BMI	26.3 ± 3.5	26.9 ± 3.4	0.442
Waistline	86.0 ± 7.8	92.0 ± 5.7	0.287
DM	6 (7.3%)	5 (23.8%)	0.029
HTN	31 (37.8%)	10 (47.6%)	0.412
HF	0 (0%)	3 (14.3%)	0.008
Stroke	3 (3.7%)	2 (9.5%)	0.273
CAD	3 (3.7%)	1 (4.8%)	0.824
Cancer	1 (1.2%)	0 (0%)	1.000
Thyroid disorder	1 (1.2%)	1 (4.8%)	0.299
Polysomnography	((2000)	
Epworth sleepiness scale	8.54 ± 4.7	8.04 ± 5.1	0.673
AHI (per hour)	40.1 (22.6–57.0)	39.5 (26.2–63.5)	0.852
AHI, REM phase (per hour)	48.0 (31.7-63.1)	44.9 (37.7–60.5)	0.859
AHI, NREM phase (per hour)	40.5 (21.5–56.8)	35.8 (23.8–63.7)	0.890
ODI (per hour)	24.9 (10.6–42.7)	30.4 (17.9–53.8)	0.169
ODI, REM phase (per hour)	40.0 (17.2–53.2)	38.0 (22.9–54.6)	0.907
ODI, NREM phase (per hour)	22.1 (9.6–40.8)	31.6 (13.7–56.0)	0.171
Lowest SpO2 (%)	80.0 (72.8–85.3)	78.0 (62.5–88.0)	0.338
Arousal index (per hour)	32.8 (19.9–55.0)	34.3 (14.7–50.1)	0.437
Sleep efficiency (%)	83.3 (73.1–88.7)	79.9 (70.9–85.7)	0.073
2D-ECHO	22.5 . 2.0	226.12	0.014
AO	32.5 ± 3.8	33.6 ± 4.3	0.244
LA	35.7 ± 4.6	40.3 ± 6.4	<0.00
IVS	11.7 ± 1.7	11.9 ± 2.8	0.714
LVPW	9.3 ± 1.6	9.5 ± 2.0	0.656
LVEDD	47.9 ± 4.4	47.5 ± 7.0	0.780
LVESD LVEF	29.1 ± 4.8 69.0 ± 9.7	31.1 ± 7.1 64.1 ± 8.5	0.225

Table 2. Univariate and multivariate analysis for predictors of atrial fibrillation in patients with obstructive sleep apnea syndrome.

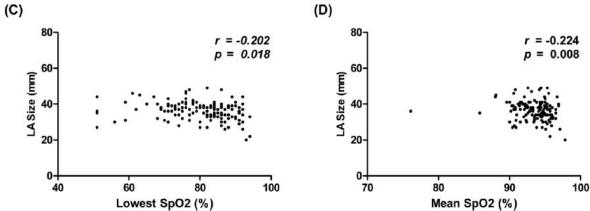
37- 11		Univariate Analysis		Multivariate Analysis		
Variables	OR	95% (CI)	p-Value	OR	95% (CI)	p-Value
Old age (year)	1.066	1.009-1.125	0.022	1.016	0.946-1.090	0.666
DM	3.958	1.075-14.576	0.039	9.972	1.463-67.988	0.019
Lower sleep efficiency (%)	1.032	0.996-1.068	0.079	1.059	1.007-1.114	0.024
Lower LVEF (%)	1.050	0.993-1.111	0.086	1.062	1.005-1.121	0.033
Larger LA (mm)	1.198	1.073-1.337	0.001	1.219	1.077-1.381	0.005

CI, confidence interval; DM, diabetes mellitus; LA, left atrium; LVEF, left ventricular ejection fraction; OR, odds ratio.

NPV.88.4%



LA ≥38.5 mm for predicting AF in OSA Sen.66.7% Spe.73.6% PPV.63.2%

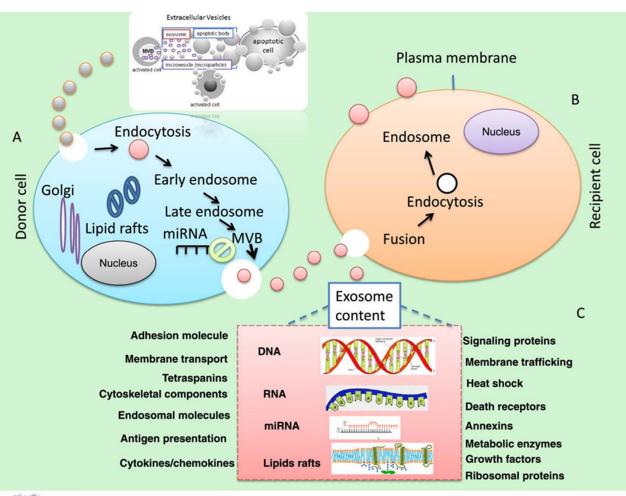

Biomedicines 2021, 9, 1463. KHRS 2023

Intermittent hypoxia plays a critical role in LA remodeling

AHI: apnea-hypopnea index ODI: oxygen desaturation index

LA size was significantly associated with ODI but not with AHI in patients with SRBD

Hypoxia and LA remodeling: in-vitro model (HL-1 cell line)

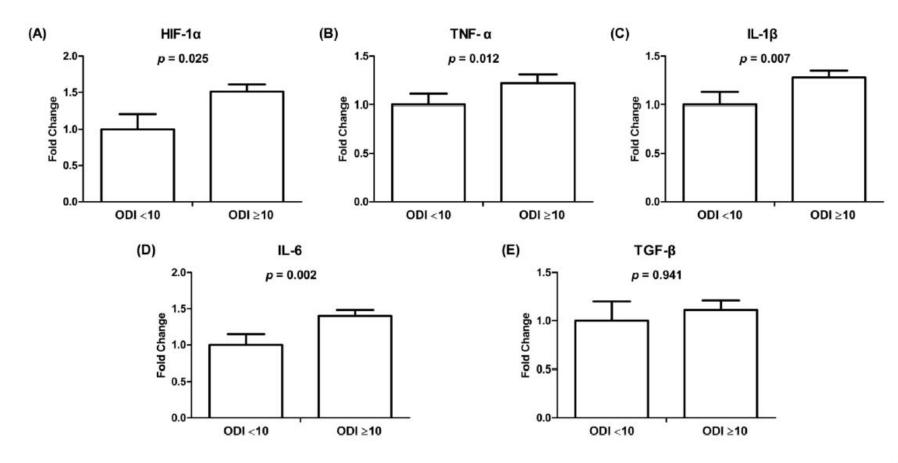

Ser.

IHR: intermittent hypoxia reoxygenetion

Life 2022, 12, 148.

KHRS 2023

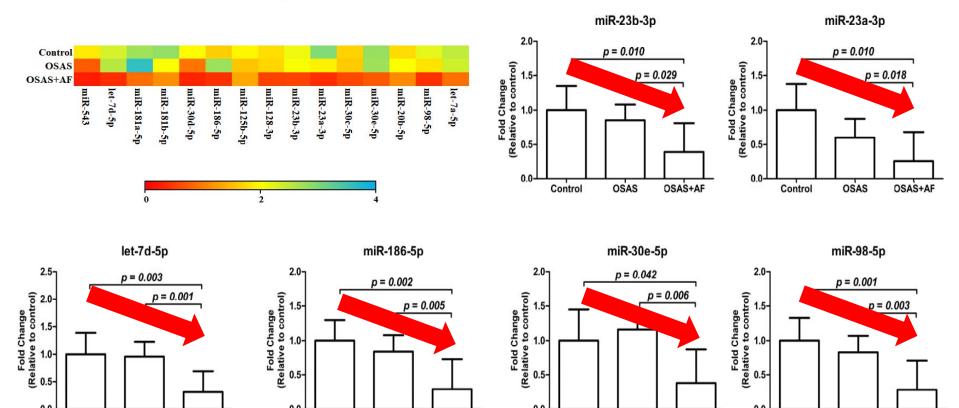
Function of exosome


Exosome:

- Exosomes, membrane-bound vesicles of 40–100 nm in diameter, are present in almost all biological fluids
- Exosomes can be released from many cell types
- Exosomal RNAs can be taken up by neighboring cells or distant cells when exosomes circulate, and they subsequently modulate recipient cells
- Among small RNAs, the proportion of miRNA is higher in exosomes than in their parent cells


mRNA gene expression of $HIF-1\alpha$ and inflammatory cytokines in HL-1 cells treated with exosomes from pts with/without significant OSA

KHRS 2023


Effect of miRNAs on AF occurrence in OSAS

OSAS

Control

OSAS+AF

OSAS+AF

OSAS

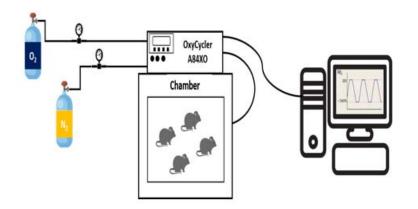
Control

OSAS+AF

Control

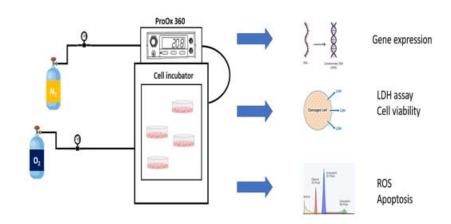
OSAS

OSAS+AF


OSAS

Control

In-vitro and In-vivo hypoxia model


Hypoxia model

Animal

- 一天進行8小時的缺氧循環
- 一個循環: 21% O₂ for 30 seconds to 7% O₂ for 30 seconds
- 缺氧週數: 短期缺氧:2週、長期缺氧:8週
- · 生理檢查項目:EEG.EMG
- 分生實驗:Gene and protein expression, 組織染色

Cell

- 讓細胞進行缺氧的實驗 比較缺氧對細胞造成的傷害 •
- 一天進行8小時的缺氧循環
- 一個循環17.5-min hypoxic period (0.1 % O2 and 5 % CO2), followed by 12.5 min of re-oxygenation (21 % O2 and 5 % CO2)
- 缺氧天數:1-3天

Summary

- OSA can influence the incidence, prevalence, and successful treatment of AF, and CPAP is associated with a reduction in AF burden and a better response to catheter ablation of AF (but not RCT trial)
- Hypoxia/hypercapnia, systemic inflammation, and autonomic nervous system modulation are biological mechanisms that link OSA to AF
- Atrial fibrosis and remodeling may play an important role in the development of AF in OSA patients
- Further studies are needed to investigate how exosomes and miRNAs modulate atrial fibrosis and contribute to AF occurrence in OSA patients

